~ move (for types that do not implement Copy)

@® let s = String::from("hello");
S

© letb=s+"wyworld";

b

~ (cannot use s anymore)

i mutable borrow

let mut s = String::new();

s
{ let m = &mut s;
m:
(can move m)
. (can downgrade m as &.)
~
(cannot copy m)
(cannot use s at all)
T }
~

!

&mut

exclusive control (reference itself is movable)
mutable

cannot move referent

must not outlive its referent

& copy (for types that do implement Copy)

let 1 = 42;
i
let 1 =1+ 1;
i (can still use i and 7)

% borrow
let s = String::from("hello");
s
{ let r = 8&s;
r:
(can copy r)
: (can still &s)
[
(cannot &mut s)
(cannot move s)
T }
~

&

nonexclusive control (reference itself is copyable)
exteriorly immutable

cannot move referent

must not outlive its referent

