1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
//! Describing data
//!
//! The core function of MPI is getting data from point A to point B (where A and B are e.g. single
//! processes, multiple processes, the filesystem, ...). It offers facilities to describe that data
//! (layout in memory, behavior under certain operators) that go beyound a start address and a
//! number of bytes.
//!
//! An MPI datatype describes a memory layout and semantics (e.g. in a collective reduce
//! operation). There are several pre-defined `SystemDatatype`s which directly correspond to Rust
//! primitive types, such as `MPI_DOUBLE` and `f64`. A direct relationship between a Rust type and
//! an MPI datatype is covered by the `Equivalence` trait. Starting from the
//! `SystemDatatype`s, the user can build various `UserDatatype`s, e.g. to describe the layout of a
//! struct (which should then implement `Equivalence`) or to intrusively describe parts of
//! an object in memory like all elements below the diagonal of a dense matrix stored in row-major
//! order.
//!
//! A `Buffer` describes a specific piece of data in memory that MPI should operate on. In addition
//! to specifying the datatype of the data. It knows the address in memory where the data begins
//! and how many instances of the datatype are contained in the data. The `Buffer` trait is
//! implemented for slices that contain types implementing `Equivalence`.
//!
//! In order to use arbitrary datatypes to describe the contents of a slice, the `View` type is
//! provided. However, since it can be used to instruct the underlying MPI implementation to
//! rummage around arbitrary parts of memory, its constructors are currently marked unsafe.
//!
//! # Unfinished features
//!
//! - **4.1.2**: Datatype constructors, `MPI_Type_create_struct()`
//! - **4.1.3**: Subarray datatype constructors, `MPI_Type_create_subarray()`,
//! - **4.1.4**: Distributed array datatype constructors, `MPI_Type_create_darray()`
//! - **4.1.5**: Address and size functions, `MPI_Get_address()`, `MPI_Aint_add()`,
//! `MPI_Aint_diff()`, `MPI_Type_size()`, `MPI_Type_size_x()`
//! - **4.1.7**: Extent and bounds of datatypes: `MPI_Type_get_extent()`,
//! `MPI_Type_get_extent_x()`, `MPI_Type_create_resized()`
//! - **4.1.8**: True extent of datatypes, `MPI_Type_get_true_extent()`,
//! `MPI_Type_get_true_extent_x()`
//! - **4.1.10**: Duplicating a datatype, `MPI_Type_dup()`
//! - **4.1.11**: `MPI_Get_elements()`, `MPI_Get_elements_x()`
//! - **4.1.13**: Decoding a datatype, `MPI_Type_get_envelope()`, `MPI_Type_get_contents()`
//! - **4.2**: Pack and unpack, `MPI_Pack()`, `MPI_Unpack()`, `MPI_Pack_size()`
//! - **4.3**: Canonical pack and unpack, `MPI_Pack_external()`, `MPI_Unpack_external()`,
//! `MPI_Pack_external_size()`

use std::mem;
use std::borrow::Borrow;
use std::os::raw::c_void;

use conv::ConvUtil;

use super::{Address, Count};

use ffi;
use ffi::MPI_Datatype;

use raw::traits::*;

/// Datatype traits
pub mod traits {
    pub use super::{Equivalence, Datatype, AsDatatype, Collection, Pointer, PointerMut, Buffer,
                    BufferMut, Partitioned, PartitionedBuffer, PartitionedBufferMut};
}

/// A system datatype, e.g. `MPI_FLOAT`
///
/// # Standard section(s)
///
/// 3.2.2
#[derive(Copy, Clone)]
pub struct SystemDatatype(MPI_Datatype);

unsafe impl AsRaw for SystemDatatype {
    type Raw = MPI_Datatype;
    fn as_raw(&self) -> Self::Raw {
        self.0
    }
}

impl Datatype for SystemDatatype {}

/// A direct equivalence exists between the implementing type and an MPI datatype
///
/// # Standard section(s)
///
/// 3.2.2
pub unsafe trait Equivalence {
    /// The type of the equivalent MPI datatype (e.g. `SystemDatatype` or `UserDatatype`)
    type Out: Datatype;
    /// The MPI datatype that is equivalent to this Rust type
    fn equivalent_datatype() -> Self::Out;
}

macro_rules! equivalent_system_datatype {
    ($rstype:path, $mpitype:path) => (
        unsafe impl Equivalence for $rstype {
            type Out = SystemDatatype;
            fn equivalent_datatype() -> Self::Out {
                SystemDatatype(unsafe_extern_static!($mpitype))
            }
        }
    )
}

equivalent_system_datatype!(f32, ffi::RSMPI_FLOAT);
equivalent_system_datatype!(f64, ffi::RSMPI_DOUBLE);

equivalent_system_datatype!(i8, ffi::RSMPI_INT8_T);
equivalent_system_datatype!(i16, ffi::RSMPI_INT16_T);
equivalent_system_datatype!(i32, ffi::RSMPI_INT32_T);
equivalent_system_datatype!(i64, ffi::RSMPI_INT64_T);

equivalent_system_datatype!(u8, ffi::RSMPI_UINT8_T);
equivalent_system_datatype!(u16, ffi::RSMPI_UINT16_T);
equivalent_system_datatype!(u32, ffi::RSMPI_UINT32_T);
equivalent_system_datatype!(u64, ffi::RSMPI_UINT64_T);

#[cfg(target_pointer_width = "32")]
equivalent_system_datatype!(usize, ffi::RSMPI_UINT32_T);
#[cfg(target_pointer_width = "32")]
equivalent_system_datatype!(isize, ffi::RSMPI_INT32_T);

#[cfg(target_pointer_width = "64")]
equivalent_system_datatype!(usize, ffi::RSMPI_UINT64_T);
#[cfg(target_pointer_width = "64")]
equivalent_system_datatype!(isize, ffi::RSMPI_INT64_T);

/// A user defined MPI datatype
///
/// # Standard section(s)
///
/// 4
pub struct UserDatatype(MPI_Datatype);

impl UserDatatype {
    /// Constructs a new datatype by concatenating `count` repetitions of `oldtype`
    ///
    /// # Examples
    /// See `examples/contiguous.rs`
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn contiguous<D>(count: Count, oldtype: &D) -> UserDatatype
        where D: Datatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_contiguous(count, oldtype.as_raw(), &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Construct a new datatype out of `count` blocks of `blocklength` elements of `oldtype`
    /// concatenated with the start of consecutive blocks placed `stride` elements apart.
    ///
    /// # Examples
    /// See `examples/vector.rs`
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn vector<D>(count: Count, blocklength: Count, stride: Count, oldtype: &D) -> UserDatatype
        where D: Datatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_vector(count, blocklength, stride, oldtype.as_raw(), &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Like `vector()` but `stride` is given in bytes rather than elements of `oldtype`.
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn heterogeneous_vector<D>(count: Count,
                                   blocklength: Count,
                                   stride: Address,
                                   oldtype: &D)
                                   -> UserDatatype
        where D: Datatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_hvector(count, blocklength, stride, oldtype.as_raw(), &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Constructs a new type out of multiple blocks of individual length and displacement.
    /// Block `i` will be `blocklengths[i]` items of datytpe `oldtype` long and displaced by
    /// `dispplacements[i]` items of the `oldtype`.
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn indexed<D>(blocklengths: &[Count], displacements: &[Count], oldtype: &D) -> UserDatatype
        where D: Datatype
    {
        assert_eq!(blocklengths.len(), displacements.len());
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_indexed(blocklengths.count(),
                                  blocklengths.as_ptr(),
                                  displacements.as_ptr(),
                                  oldtype.as_raw(),
                                  &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Constructs a new type out of multiple blocks of individual length and displacement.
    /// Block `i` will be `blocklengths[i]` items of datytpe `oldtype` long and displaced by
    /// `dispplacements[i]` bytes.
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn heterogeneous_indexed<D>(blocklengths: &[Count],
                                    displacements: &[Address],
                                    oldtype: &D)
                                    -> UserDatatype
        where D: Datatype
    {
        assert_eq!(blocklengths.len(), displacements.len());
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_create_hindexed(blocklengths.count(),
                                          blocklengths.as_ptr(),
                                          displacements.as_ptr(),
                                          oldtype.as_raw(),
                                          &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Construct a new type out of blocks of the same length and individual displacements.
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn indexed_block<D>(blocklength: Count,
                            displacements: &[Count],
                            oldtype: &D)
                            -> UserDatatype
        where D: Datatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_create_indexed_block(displacements.count(),
                                               blocklength,
                                               displacements.as_ptr(),
                                               oldtype.as_raw(),
                                               &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Construct a new type out of blocks of the same length and individual displacements.
    /// Displacements are in bytes.
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn heterogeneous_indexed_block<D>(blocklength: Count,
                                          displacements: &[Address],
                                          oldtype: &D)
                                          -> UserDatatype
        where D: Datatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        unsafe {
            ffi::MPI_Type_create_hindexed_block(displacements.count(),
                                                blocklength,
                                                displacements.as_ptr(),
                                                oldtype.as_raw(),
                                                &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }

    /// Constructs a new datatype out of blocks of different length, displacement and datatypes
    ///
    /// # Examples
    /// See `examples/structured.rs`
    ///
    /// # Standard section(s)
    ///
    /// 4.1.2
    pub fn structured(count: Count, blocklengths: &[Count], displacements: &[Address],
                      types: &[&Datatype<Raw = MPI_Datatype>]) -> UserDatatype
    {
        let mut newtype: MPI_Datatype = unsafe { mem::uninitialized() };
        let types = types.iter().map(|t| t.as_raw()).collect::<Vec<_>>();
        unsafe {
            ffi::MPI_Type_create_struct(count, blocklengths.as_ptr(), displacements.as_ptr(),
                types.as_ptr(), &mut newtype);
            ffi::MPI_Type_commit(&mut newtype);
        }
        UserDatatype(newtype)
    }
}

impl Drop for UserDatatype {
    fn drop(&mut self) {
        unsafe {
            ffi::MPI_Type_free(&mut self.0);
        }
        assert_eq!(self.0, unsafe_extern_static!(ffi::RSMPI_DATATYPE_NULL));
    }
}

unsafe impl AsRaw for UserDatatype {
    type Raw = MPI_Datatype;
    fn as_raw(&self) -> Self::Raw {
        self.0
    }
}

impl Datatype for UserDatatype {}

/// A Datatype describes the layout of messages in memory.
pub trait Datatype: AsRaw<Raw = MPI_Datatype> { }
impl<'a, D> Datatype for &'a D where D: 'a + Datatype
{}

/// Something that has an associated datatype
pub unsafe trait AsDatatype {
    /// The type of the associated MPI datatype (e.g. `SystemDatatype` or `UserDatatype`)
    type Out: Datatype;
    /// The associated MPI datatype
    fn as_datatype(&self) -> Self::Out;
}

unsafe impl<T> AsDatatype for T where T: Equivalence
{
    type Out = <T as Equivalence>::Out;
    fn as_datatype(&self) -> Self::Out {
        <T as Equivalence>::equivalent_datatype()
    }
}

unsafe impl<T> AsDatatype for [T] where T: Equivalence
{
    type Out = <T as Equivalence>::Out;
    fn as_datatype(&self) -> Self::Out {
        <T as Equivalence>::equivalent_datatype()
    }
}

/// A countable collection of things.
pub unsafe trait Collection {
    /// How many things are in this collection.
    fn count(&self) -> Count;
}

unsafe impl<T> Collection for T where T: Equivalence
{
    fn count(&self) -> Count {
        1
    }
}

unsafe impl<T> Collection for [T] where T: Equivalence
{
    fn count(&self) -> Count {
        self.len().value_as().expect("Length of slice cannot be expressed as an MPI Count.")
    }
}

/// Provides a pointer to the starting address in memory.
pub unsafe trait Pointer {
    /// A pointer to the starting address in memory
    unsafe fn pointer(&self) -> *const c_void;
}

unsafe impl<T> Pointer for T where T: Equivalence
{
    unsafe fn pointer(&self) -> *const c_void {
        let p: *const T = self;
        p as *const c_void
    }
}

unsafe impl<T> Pointer for [T] where T: Equivalence
{
    unsafe fn pointer(&self) -> *const c_void {
        mem::transmute(self.as_ptr())
    }
}

/// Provides a mutable pointer to the starting address in memory.
pub unsafe trait PointerMut {
    /// A mutable pointer to the starting address in memory
    unsafe fn pointer_mut(&mut self) -> *mut c_void;
}

unsafe impl<T> PointerMut for T where T: Equivalence
{
    unsafe fn pointer_mut(&mut self) -> *mut c_void {
        let p: *mut T = self;
        p as *mut c_void
    }
}

unsafe impl<T> PointerMut for [T] where T: Equivalence
{
    unsafe fn pointer_mut(&mut self) -> *mut c_void {
        mem::transmute(self.as_mut_ptr())
    }
}

/// A buffer is a region in memory that starts at `pointer()` and contains `count()` copies of
/// `as_datatype()`.
pub unsafe trait Buffer: Pointer + Collection + AsDatatype { }
unsafe impl<T> Buffer for T where T: Equivalence
{}
unsafe impl<T> Buffer for [T] where T: Equivalence
{}

/// A mutable buffer is a region in memory that starts at `pointer_mut()` and contains `count()`
/// copies of `as_datatype()`.
pub unsafe trait BufferMut: PointerMut + Collection + AsDatatype { }
unsafe impl<T> BufferMut for T where T: Equivalence
{}
unsafe impl<T> BufferMut for [T] where T: Equivalence
{}

/// A buffer with a user specified count and datatype
///
/// # Safety
///
/// Views can be used to instruct the underlying MPI library to rummage around at arbitrary
/// locations in memory. This might be controlled later on using datatype bounds an slice lengths
/// but for now, all View constructors are marked `unsafe`.
pub struct View<'d, 'b, D, B: ?Sized>
    where D: 'd + Datatype,
          B: 'b + Pointer
{
    datatype: &'d D,
    count: Count,
    buffer: &'b B
}

impl<'d, 'b, D, B: ?Sized> View<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + Pointer
{
    /// Return a view of `buffer` containing `count` instances of MPI datatype `datatype`.
    ///
    /// # Examples
    /// See `examples/contiguous.rs`, `examples/vector.rs`
    pub unsafe fn with_count_and_datatype(buffer: &'b B,
                                          count: Count,
                                          datatype: &'d D)
                                          -> View<'d, 'b, D, B> {
        View {
            datatype: datatype,
            count: count,
            buffer: buffer
        }
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> AsDatatype for View<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + Pointer
{
    type Out = &'d D;
    fn as_datatype(&self) -> Self::Out {
        self.datatype
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> Collection for View<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + Pointer
{
    fn count(&self) -> Count {
        self.count
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> Pointer for View<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + Pointer
{
    unsafe fn pointer(&self) -> *const c_void {
        self.buffer.pointer()
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> Buffer for View<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + Pointer
{}

/// A buffer with a user specified count and datatype
///
/// # Safety
///
/// Views can be used to instruct the underlying MPI library to rummage around at arbitrary
/// locations in memory. This might be controlled later on using datatype bounds an slice lengths
/// but for now, all View constructors are marked `unsafe`.
pub struct MutView<'d, 'b, D, B: ?Sized>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{
    datatype: &'d D,
    count: Count,
    buffer: &'b mut B
}

impl<'d, 'b, D, B: ?Sized> MutView<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{
    /// Return a view of `buffer` containing `count` instances of MPI datatype `datatype`.
    ///
    /// # Examples
    /// See `examples/contiguous.rs`, `examples/vector.rs`
    pub unsafe fn with_count_and_datatype(buffer: &'b mut B,
                                          count: Count,
                                          datatype: &'d D)
                                          -> MutView<'d, 'b, D, B> {
        MutView {
            datatype: datatype,
            count: count,
            buffer: buffer
        }
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> AsDatatype for MutView<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{
    type Out = &'d D;
    fn as_datatype(&self) -> Self::Out {
        self.datatype
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> Collection for MutView<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{
    fn count(&self) -> Count {
        self.count
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> PointerMut for MutView<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{
    unsafe fn pointer_mut(&mut self) -> *mut c_void {
        self.buffer.pointer_mut()
    }
}

unsafe impl<'d, 'b, D, B: ?Sized> BufferMut for MutView<'d, 'b, D, B>
    where D: 'd + Datatype,
          B: 'b + PointerMut
{}

/// Describes how a `Buffer` is partitioned by specifying the count of elements and displacement
/// from the start of the buffer for each partition.
pub trait Partitioned {
    /// The count of elements in each partition.
    fn counts(&self) -> &[Count];
    /// The displacement from the start of the buffer for each partition.
    fn displs(&self) -> &[Count];

    /// A pointer to `counts()`
    unsafe fn counts_ptr(&self) -> *const Count {
        self.counts().as_ptr()
    }
    /// A pointer to `displs()`
    unsafe fn displs_ptr(&self) -> *const Count {
        self.displs().as_ptr()
    }
}

/// A buffer that is `Partitioned`
pub trait PartitionedBuffer: Partitioned + Pointer + AsDatatype { }

/// A mutable buffer that is `Partitioned`
pub trait PartitionedBufferMut: Partitioned + PointerMut + AsDatatype { }

/// Adds a partitioning to an existing `Buffer` so that it becomes `Partitioned`
pub struct Partition<'b, B: 'b + ?Sized, C, D> {
    buf: &'b B,
    counts: C,
    displs: D
}

impl<'b, B: ?Sized, C, D> Partition<'b, B, C, D>
    where B: 'b + Buffer,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{
    /// Partition `buf` using `counts` and `displs`
    pub fn new(buf: &B, counts: C, displs: D) -> Partition<B, C, D> {
        let n = buf.count();
        assert!(counts.borrow().iter().zip(displs.borrow().iter()).all(|(&c, &d)| c + d <= n));

        Partition {
            buf: buf,
            counts: counts,
            displs: displs
        }
    }
}

unsafe impl<'b, B: ?Sized, C, D> AsDatatype for Partition<'b, B, C, D> where B: 'b + AsDatatype
{
    type Out = <B as AsDatatype>::Out;
    fn as_datatype(&self) -> Self::Out {
        self.buf.as_datatype()
    }
}

unsafe impl<'b, B: ?Sized, C, D> Pointer for Partition<'b, B, C, D> where B: 'b + Pointer
{
    unsafe fn pointer(&self) -> *const c_void {
        self.buf.pointer()
    }
}

impl<'b, B: ?Sized, C, D> Partitioned for Partition<'b, B, C, D>
    where B: 'b,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{
    fn counts(&self) -> &[Count] {
        self.counts.borrow()
    }
    fn displs(&self) -> &[Count] {
        self.displs.borrow()
    }
}

impl<'b, B: ?Sized, C, D> PartitionedBuffer for Partition<'b, B, C, D>
    where B: 'b + Pointer + AsDatatype,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{}

/// Adds a partitioning to an existing `BufferMut` so that it becomes `Partitioned`
pub struct PartitionMut<'b, B: 'b + ?Sized, C, D> {
    buf: &'b mut B,
    counts: C,
    displs: D
}

impl<'b, B: ?Sized, C, D> PartitionMut<'b, B, C, D>
    where B: 'b + BufferMut,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{
    /// Partition `buf` using `counts` and `displs`
    pub fn new(buf: &mut B, counts: C, displs: D) -> PartitionMut<B, C, D> {
        let n = buf.count();
        assert!(counts.borrow().iter().zip(displs.borrow().iter()).all(|(&c, &d)| c + d <= n));

        PartitionMut {
            buf: buf,
            counts: counts,
            displs: displs
        }
    }
}

unsafe impl<'b, B: ?Sized, C, D> AsDatatype for PartitionMut<'b, B, C, D> where B: 'b + AsDatatype
{
    type Out = <B as AsDatatype>::Out;
    fn as_datatype(&self) -> Self::Out {
        self.buf.as_datatype()
    }
}

unsafe impl<'b, B: ?Sized, C, D> PointerMut for PartitionMut<'b, B, C, D> where B: 'b + PointerMut
{
    unsafe fn pointer_mut(&mut self) -> *mut c_void {
        self.buf.pointer_mut()
    }
}

impl<'b, B: ?Sized, C, D> Partitioned for PartitionMut<'b, B, C, D>
    where B: 'b,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{
    fn counts(&self) -> &[Count] {
        self.counts.borrow()
    }
    fn displs(&self) -> &[Count] {
        self.displs.borrow()
    }
}

impl<'b, B: ?Sized, C, D> PartitionedBufferMut for PartitionMut<'b, B, C, D>
    where B: 'b + PointerMut + AsDatatype,
          C: Borrow<[Count]>,
          D: Borrow<[Count]>
{}

/// Returns the address of the argument in a format suitable for use with datatype constructors
///
/// # Examples
/// See `examples/structured.rs`
///
/// # Standard section(s)
///
/// 4.1.5
pub fn address_of<T>(x: &T) -> Address {
    let mut address = unsafe { mem::uninitialized() };
    let x: *const T = x;
    unsafe {
        ffi::MPI_Get_address(x as *const c_void, &mut address);
    }
    address
}